Hyperglycemia aggravates decreases of PEA-15 and its two phosphorylated forms in cerebral ischemia
نویسندگان
چکیده
Diabetes is a metabolic health disorder and an important risk factor for stroke. Phosphoprotein enriched in astrocytes 15 (PEA-15) is a multifunctional protein modulating cell proliferation, survival, apoptosis and glucose metabolism. This study investigated whether diabetes modulates the expression of PEA-15 and two phosphorylated forms (Ser 104 and Ser 116) in middle cerebral artery occlusion (MCAO)-induced brain injury. Male Sprague-Dawley rats were administrated with streptozotocin (40 mg/kg) and were underwent right middle cerebral artery occlusion (MCAO) 4 weeks after streptozotocin injection. Brain tissues were collected 24 hr after MCAO and stained using triphenyltetrazolium chloride. Western blot analysis was performed to elucidate the expression of PEA-15 and two phosphorylated forms (Ser 104 and Ser 116) in right cerebral cortex. Infarct volume during MCAO injury was severely increased in diabetic animals compared to non-diabetic animals. We identified the decrease in PEA-15 in animals that underwent MCAO using proteomic approach. PEA-15 expression during MCAO was strongly decreased in diabetic animals compared to non-diabetic animals. Western blots analysis confirmed that diabetes exacerbated the decrease in PEA-15 expression after MCAO. Moreover, decrease in expression of phospho-PEA-15 (Ser 104 and Ser 116) was greater in diabetic than in non-diabetic animals. These results suggested that a diabetic condition may aggravate brain damage through decreasing expression of PEA-15 and phospho-PEA-15 (Ser 104 and Ser 116) in ischemic brain injury.
منابع مشابه
N-Palmitoylethanolamine Prevents the Run-down of Amplitudes in Cortical Spreading Depression Possibly Implicating Proinflammatory Cytokine Release
Cortical spreading depression (CSD), a wave of neuronal depolarization in the cerebral cortex following traumatic brain injury or cerebral ischemia, significantly aggravates brain damage. Here, we tested whether N-palmitoylethanolamine (PEA), a substance that effectively reduces lesion volumes and neurological deficits after ischemic stroke, influences CSD. CSD was elicited chemically in adult ...
متن کاملCerebral Ischemia-Reperfusion Injuries in Vanadyl-Treated Diabetic Rats
Background: Ischemic stroke recovery is poor in diabetic mellitus (DM). Vanadium compounds (vanadium) relieve DM signs, but their influences on cerebral ischemia/reperfusion injury (I/RI) are inconclusive. Herein, the intensity of I/RI was inspected in vanadium-treated DM rats.Methods: Rats made diabetic with a single intravenous dose of streptozocin (39 mg/kg). Normal and DM rats used water or...
متن کاملFocal Neurological Symptoms as the Presenting Manifestations of Nonketotic Hyperglycemia Report of Two Cases
Focal neurological symptoms may provide the first clinical clue to the presence of nonketotic hyperglycemia (NKH) and sometimes unveil previously undiagnosed diabetes. We report two patients with hemichorea-hemiballism (HC-HB) or partial motor seizures as the first manifestation of NKH. These disorders are best treated with insulin and rehydration. The neurological symptoms generally resolve wi...
متن کاملBone marrow stromal cells can promote the neurogenesis in subventricular zone in the rat with focal cerebral ischemia
Introdution: Stroke is one of the most common diseases caused by occlusion or rupture of blood vessels in brain. It brings heavily loads for families and societies. Although some new strategies including treatment of tissue plasminogen activator have been applied in the clinic, these methods do not have perfect effect. Accordingly, more effective therapeutic strategies need to be developed...
متن کاملContribution of Nitric Oxide Synthase (NOS) Activity in Blood-Brain Barrier Disruption and Edema after Acute Ischemia/ Reperfusion in Aortic Coarctation-Induced Hypertensive Rats
Background: Nitric oxide synthase (NOS) activity is increased during hypertension and cerebral ischemia. NOS inactivation reduces stroke-induced cerebral injuries, but little is known about its role in blood-brain barrier (BBB) disruption and cerebral edema formation during stroke in acute hypertension. Here, we investigated the role of NOS inhibition in progression of edema formation and BBB d...
متن کامل